Home
Class 12
MATHS
If f(x)=(1)/(x+2)+(x-1)^(2), what is f(-...

If `f(x)=(1)/(x+2)+(x-1)^(2)`, what is `f(-1)`?

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x^2-6x+3)/(x-1) , what is f(-1) ?

If f(x)=x^(2)-2x , what is f(2x+1) ?

If f(x)=x^(2)+2x-2 and if f(s-1)=1 , what is the smallest possible value of s ?

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f_1(x)=(1)/(x), f_(2) (x)=1-x, f_(3) (x)=1/(1-x) then find J(x) such that f_(2) o J o f_(1) (x)=f_(3) (x) (a) f_(1) (x) (b) (1)/(x) f_(3) (x) (c) f_(3) (x) (d) f_(2) (x)

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .