Home
Class 12
MATHS
If g(y)=y^(2)-(1)/(y+1), what is g((1)/(...

If `g(y)=y^(2)-(1)/(y+1)`, what is `g((1)/(x))`?

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g\left(\frac{1}{x}\right) \) for the function \( g(y) = y^2 - \frac{1}{y + 1} \), we will follow these steps: ### Step 1: Substitute \( y \) with \( \frac{1}{x} \) We start by substituting \( y \) in the function \( g(y) \) with \( \frac{1}{x} \): \[ g\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 - \frac{1}{\frac{1}{x} + 1} \] ### Step 2: Simplify \( \left(\frac{1}{x}\right)^2 \) Calculating \( \left(\frac{1}{x}\right)^2 \): \[ \left(\frac{1}{x}\right)^2 = \frac{1}{x^2} \] ### Step 3: Simplify the second term \( \frac{1}{\frac{1}{x} + 1} \) Now we simplify \( \frac{1}{\frac{1}{x} + 1} \): \[ \frac{1}{\frac{1}{x} + 1} = \frac{1}{\frac{1 + x}{x}} = \frac{x}{1 + x} \] ### Step 4: Combine the terms Now we combine the two parts we have: \[ g\left(\frac{1}{x}\right) = \frac{1}{x^2} - \frac{x}{1 + x} \] ### Step 5: Find a common denominator To combine the fractions, we need a common denominator. The common denominator will be \( x^2(1 + x) \): \[ g\left(\frac{1}{x}\right) = \frac{1(1 + x) - x^3}{x^2(1 + x)} \] ### Step 6: Simplify the numerator Now we simplify the numerator: \[ 1(1 + x) - x^3 = 1 + x - x^3 \] ### Step 7: Write the final expression Thus, we have: \[ g\left(\frac{1}{x}\right) = \frac{1 + x - x^3}{x^2(1 + x)} \] ### Final Answer The final expression for \( g\left(\frac{1}{x}\right) \) is: \[ g\left(\frac{1}{x}\right) = \frac{1 + x - x^3}{x^2(1 + x)} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x+(1)/(y)) + g(x-(1)/(y)) = 2g(x) g((1)/(y)) AA x, y in R, y !=0 and g(0) = 0. Then find g(1), g(2) .

Let a function of 2 variables be defined by g(x, y)=xy+3xy^(2)-(x-y^(2)) , what is the value of g(2, -1) ?

If g(x)=max(y^(2)-xy)(0le yle1) , then the minimum value of g(x) (for real x) is

If a^((1)/(x))= b^((1)/(y))= c^((1)/(z)) and a,b,c are in G.P., prove that x,y,z are in A.P.

If (1)/(x) + (1)/(y) = 2 and (3)/(x) + (4)/(y) = 7 , what is the value of (x + y) ?

If (1)/(8)x+(1)/(8)y=y-2x , then what is the value of (x)/(y) ?

If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x in R . If right handed derivative at x=0 exists for f(x) find the derivative of g(x) at x =0

If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x in R . If right handed derivative at x=0 exists for f(x) find the derivative of g(x) at x =0

If f(y) = (y)/(sqrt(1-y^(2))), g(y) = (y)/(sqrt(1+y^(2))) , then (fog) y is equal to

If (1)/(x+y), (1)/(2y) , (1)/(y+z) are the three consecutive terms of an A.P. prove that x ,y,z are the three consecutive terms of a G.P.