Home
Class 12
MATHS
Simplify : (0.08)^(2)div0.4...

Simplify : `(0.08)^(2)div0.4`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((0.08)^2 \div 0.4\), we can follow these steps: ### Step 1: Write the expression in a clearer form We start with the expression: \[ (0.08)^2 \div 0.4 \] This can be rewritten as: \[ \frac{(0.08)^2}{0.4} \] ### Step 2: Calculate \((0.08)^2\) Now, we calculate \((0.08)^2\): \[ 0.08 \times 0.08 = 0.0064 \] ### Step 3: Substitute back into the expression Now we substitute this value back into the expression: \[ \frac{0.0064}{0.4} \] ### Step 4: Convert to fraction for easier division To simplify \(\frac{0.0064}{0.4}\), we can convert both numbers to fractions: \[ 0.0064 = \frac{64}{10000} \quad \text{and} \quad 0.4 = \frac{4}{10} \] Thus, we can rewrite the division as: \[ \frac{\frac{64}{10000}}{\frac{4}{10}} = \frac{64}{10000} \times \frac{10}{4} \] ### Step 5: Simplify the fraction Now we simplify: \[ \frac{64 \times 10}{10000 \times 4} = \frac{640}{40000} \] Next, we can simplify this fraction: \[ \frac{640 \div 640}{40000 \div 640} = \frac{1}{62.5} \] ### Step 6: Convert to decimal Now we convert \(\frac{1}{62.5}\) to decimal: \[ \frac{1}{62.5} = 0.016 \] ### Final Answer Thus, the simplified form of \((0.08)^2 \div 0.4\) is: \[ \boxed{0.016} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (4.5xx2+6.6)div0.03

Simplify : [8-(1.08+6.9)]^(2)

Simplify: (0.00081)/(0.09)

Simplify : 5{(-6)+(12div4)}

Simplify : (-6)-{(-28)div(-7)}

Simplify : a. ((4)/(7) div (36)/(49)) - (1)/(2)

Simplify : 7x + 4{x^(2) div(5x div 10)} - 3{2 - x^(3) div (3x^(2) div x)}

Simplify : ((6)/(7) div (2)/(5)) + ((5)/(9) div (27)/( 25))

Simplify 27x^(3)y^(2)z div (-6xy^(3)z^(4))

Simplify : (1.3xx2.4)/(0.39)