Home
Class 12
MATHS
Simplify: (0.00081)/(0.09)...

Simplify: `(0.00081)/(0.09)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((0.00081)/(0.09)\), we can follow these steps: ### Step 1: Rewrite the numbers in scientific notation We can express \(0.00081\) and \(0.09\) in scientific notation: - \(0.00081 = 81 \times 10^{-5}\) - \(0.09 = 9 \times 10^{-2}\) ### Step 2: Set up the division Now we can rewrite the division: \[ \frac{0.00081}{0.09} = \frac{81 \times 10^{-5}}{9 \times 10^{-2}} \] ### Step 3: Simplify the fraction We can simplify the fraction by dividing the coefficients and subtracting the exponents: \[ \frac{81}{9} = 9 \] For the powers of ten: \[ 10^{-5} \div 10^{-2} = 10^{-5 - (-2)} = 10^{-5 + 2} = 10^{-3} \] ### Step 4: Combine the results Now we can combine the results from the previous step: \[ \frac{0.00081}{0.09} = 9 \times 10^{-3} \] ### Step 5: Convert back to decimal form To convert \(9 \times 10^{-3}\) back to decimal form: \[ 9 \times 10^{-3} = \frac{9}{1000} = 0.009 \] ### Final Answer Thus, the simplified form of \((0.00081)/(0.09)\) is: \[ \boxed{0.009} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (0.08)^(2)div0.4

Simplify : (6.3xx0.3)/(0.1)

Simplify : (1.3xx2.4)/(0.39)

sqrt(0.0081)

Simplify: 0+(-3)/5

Simplify : (I) (sqrt(59. 29)\ -\ sqrt(5. 29))/(sqrt(59. 29)\ +\ sqrt(5. 29)) (ii) (sqrt(0. 2304)\ -\ sqrt(0. 1764))/(sqrt(0. 2304)\ +\ sqrt(0. 1764))

Multiply : 0.09xx100

Express the following as fractions and simplify : " 2.45 0.008"

Simplify : (4.5xx2+6.6)div0.03

(0.000729)^(-3//4)xx(0.09)^(-3//4)=