Home
Class 12
MATHS
{:("Quantity A","Quantity B"),(10^(-3)xx...

`{:("Quantity A","Quantity B"),(10^(-3)xx((0.002)/(10^(-3))),0.02):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given question, we will evaluate both quantities step by step. ### Step 1: Analyze Quantity A Quantity A is given as: \[ \text{Quantity A} = 10^{-3} \times \left(\frac{0.002}{10^{-3}}\right) \] ### Step 2: Simplify the Expression We can simplify the expression inside the parentheses: \[ \frac{0.002}{10^{-3}} = 0.002 \times 10^{3} \] This is because dividing by \(10^{-3}\) is equivalent to multiplying by \(10^{3}\). ### Step 3: Calculate \(0.002 \times 10^{3}\) Now, we calculate: \[ 0.002 \times 10^{3} = 0.002 \times 1000 = 2 \] ### Step 4: Substitute Back into Quantity A Now, substituting back into Quantity A: \[ \text{Quantity A} = 10^{-3} \times 2 \] ### Step 5: Calculate Quantity A Calculating \(10^{-3} \times 2\): \[ \text{Quantity A} = 2 \times 10^{-3} = 0.002 \] ### Step 6: Compare with Quantity B Now we compare Quantity A with Quantity B: - Quantity A = 0.002 - Quantity B = 0.02 ### Step 7: Determine the Greater Quantity Since \(0.02\) is greater than \(0.002\): \[ \text{Quantity B} > \text{Quantity A} \] ### Final Conclusion Thus, the answer is: \[ \text{Quantity B is greater than Quantity A.} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),(y,10):}

{:("Quantity A","Quantity B"),(x,3x-4):}

{:("Quantity A","Quantity B"),((573)/(10^(-2)),0.573xx10^(5)):}

n is an integer. {:("Quantity A","Quantity B"),((-3)^(2n),(-3)^(2n+1)):}

{:("Quantity A","Quantity B"),((1+(2)/(5))xx0.25,0.35):}

{:("Quantity A","Quantity B"),((0.99)^(y),0.99xxy):}

{:("Quantity A","Quantity B"),(((2)/(3)xx(3)/(3),(2)/(3)xx(4)/(4)):}

xlt0 {:("Quantity A","Quantity B"),(x-2,-(x-2)):}

xy gt 0 {:("Quantity A","Quantity B"),(x+y,0):}