Home
Class 12
MATHS
Solve for x. x=sqrt(20)xxsqrt5...

Solve for x.
`x=sqrt(20)xxsqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x = \sqrt{20} \times \sqrt{5} \), we can follow these steps: ### Step 1: Combine the square roots We can use the property of square roots that states \( \sqrt{a} \times \sqrt{b} = \sqrt{a \times b} \). Therefore, \[ x = \sqrt{20} \times \sqrt{5} = \sqrt{20 \times 5} \] ### Step 2: Calculate the product inside the square root Now, we calculate \( 20 \times 5 \): \[ 20 \times 5 = 100 \] So, we have: \[ x = \sqrt{100} \] ### Step 3: Simplify the square root Now, we can simplify \( \sqrt{100} \): \[ \sqrt{100} = 10 \] ### Conclusion Thus, the value of \( x \) is: \[ x = 10 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x. x=sqrt(20)div sqrt5

Solve for x. x=sqrt2xxsqrt6xxsqrt(12)

Solve for x. x=(sqrt(384))/(sqrt2xxsqrt3)

Solve for x : sqrt3x^(2)+14x-5sqrt3=0

Solve for x: sqrt(11x-6)+sqrt(x-1)=sqrt(4x+5)

Using properties of proportion solve for x, given (sqrt(5x)+sqrt(2x-6))/(sqrt(5x)-sqrt(2x-6))=4 .

Solve for x : 2x^(2) + 5 sqrt(5) x - 15=0

Solve for x: (sqrt(a +x) + sqrt(a-x))/(sqrt(a+x)- sqrt(a-x))=b

Solve for x :sqrt(x+1)-sqrt(x-1)=1.

Solve for x if sqrt(x^(2)-x) lt (x-1)