Home
Class 12
MATHS
Solve for x. x=sqrt(20)div sqrt5...

Solve for x.
`x=sqrt(20)div sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x = \frac{\sqrt{20}}{\sqrt{5}} \), we can follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ x = \frac{\sqrt{20}}{\sqrt{5}} \] ### Step 2: Use the property of square roots We can use the property of square roots that states \( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \). Thus, we can rewrite the equation as: \[ x = \sqrt{\frac{20}{5}} \] ### Step 3: Simplify the fraction inside the square root Now, we simplify the fraction \( \frac{20}{5} \): \[ \frac{20}{5} = 4 \] So, we have: \[ x = \sqrt{4} \] ### Step 4: Calculate the square root Now we calculate the square root of 4: \[ x = 2 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x. x=sqrt(20)xxsqrt5

Solve for x. x=(sqrt(384))/(sqrt2xxsqrt3)

Solve for x : sqrt3x^(2)+14x-5sqrt3=0

Solve for x: (sqrt(a +x) + sqrt(a-x))/(sqrt(a+x)- sqrt(a-x))=b

Solve for x sqrt3x^2-2sqrt(2)x-2sqrt3=0

(v) Solve for x and y if (sqrt2 x+sqrt 3 y)=0 and (sqrt3 x- sqrt8 y)=0

Solve for x : 2x^(2) + 5 sqrt(5) x - 15=0

Solve for x: sqrt(11x-6)+sqrt(x-1)=sqrt(4x+5)

Using properties of proportion solve for x, given (sqrt(5x)+sqrt(2x-6))/(sqrt(5x)-sqrt(2x-6))=4 .

Using properties of proportion, solve for x : (i) (sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3) (ii) (sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2) . (iii) (3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5 .