Home
Class 12
MATHS
{:("Quantity A","Quantity B"),(sqrt(30)x...

`{:("Quantity A","Quantity B"),(sqrt(30)xxsqrt5,12):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem comparing Quantity A and Quantity B, we will follow these steps: ### Step 1: Identify the quantities - Quantity A = \( \sqrt{30} \times \sqrt{5} \) - Quantity B = 12 ### Step 2: Simplify Quantity A We can simplify Quantity A using the property of square roots: \[ \sqrt{30} \times \sqrt{5} = \sqrt{30 \times 5} \] Calculating \( 30 \times 5 \): \[ 30 \times 5 = 150 \] Thus, Quantity A becomes: \[ \sqrt{150} \] ### Step 3: Further simplify \( \sqrt{150} \) We can factor 150 to simplify it further: \[ 150 = 25 \times 6 = 5^2 \times 6 \] Using the property of square roots: \[ \sqrt{150} = \sqrt{25 \times 6} = \sqrt{25} \times \sqrt{6} = 5 \sqrt{6} \] ### Step 4: Approximate \( \sqrt{6} \) Now we need to approximate \( \sqrt{6} \). The approximate value of \( \sqrt{6} \) is about 2.449. Thus: \[ 5 \sqrt{6} \approx 5 \times 2.449 = 12.245 \] ### Step 5: Compare Quantity A and Quantity B Now we compare: - Quantity A \( \approx 12.245 \) - Quantity B = 12 Since \( 12.245 > 12 \), we conclude that: \[ \text{Quantity A is greater than Quantity B.} \] ### Final Conclusion Thus, the final answer is that Quantity A is greater than Quantity B. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),(y,10):}

{:("Quantity A","Quantity B"),(x,y):}

{:("Quantity A","Quantity B"),(x,12):}

{:("Quantity A","Quantity B"),(x,3x-4):}

{:("Quantity A","Quantity B"),(y-x,50):}

{:("Quantity A","Quantity B"),((sqrt6xxsqrt(18))/(sqrt9),(sqrt8xxsqrt(12))/(sqrt6)):}

{:("Quantity A","Quantity B"),(x+y,2x):}

x is a non - negative even integer. {:("Quantity A","Quantity B"),(x,1):}

{:("Quantity A","Quantity B"),(w+y,x+z):}