Home
Class 12
MATHS
{:("Quantity A","Quantity B"),((sqrt6xxs...

`{:("Quantity A","Quantity B"),((sqrt6xxsqrt(18))/(sqrt9),(sqrt8xxsqrt(12))/(sqrt6)):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the two quantities given: **Quantity A**: \( \frac{\sqrt{6} \times \sqrt{18}}{\sqrt{9}} \) **Quantity B**: \( \frac{\sqrt{8} \times \sqrt{12}}{\sqrt{6}} \) Let's solve each quantity step by step. ### Step 1: Calculate Quantity A 1. **Expression**: \[ \text{Quantity A} = \frac{\sqrt{6} \times \sqrt{18}}{\sqrt{9}} \] 2. **Simplify \(\sqrt{18}\)**: \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \] 3. **Substituting back**: \[ \text{Quantity A} = \frac{\sqrt{6} \times 3\sqrt{2}}{\sqrt{9}} = \frac{3\sqrt{6} \sqrt{2}}{3} \] 4. **Cancel \(3\)**: \[ \text{Quantity A} = \sqrt{6} \times \sqrt{2} = \sqrt{12} \] 5. **Simplify \(\sqrt{12}\)**: \[ \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3} \] 6. **Approximate \(2\sqrt{3}\)**: \[ 2\sqrt{3} \approx 2 \times 1.732 = 3.464 \] ### Step 2: Calculate Quantity B 1. **Expression**: \[ \text{Quantity B} = \frac{\sqrt{8} \times \sqrt{12}}{\sqrt{6}} \] 2. **Simplify \(\sqrt{8}\)**: \[ \sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2} \] 3. **Simplify \(\sqrt{12}\)**: \[ \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3} \] 4. **Substituting back**: \[ \text{Quantity B} = \frac{(2\sqrt{2}) \times (2\sqrt{3})}{\sqrt{6}} = \frac{4\sqrt{6}}{\sqrt{6}} \] 5. **Cancel \(\sqrt{6}\)**: \[ \text{Quantity B} = 4 \] ### Step 3: Compare the Two Quantities - **Quantity A**: \( \approx 3.464 \) - **Quantity B**: \( 4 \) ### Conclusion Since \( 4 > 3.464 \), we conclude that: **Quantity B is greater than Quantity A.** ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),(sqrt(30)xxsqrt5,12):}

4x-12gex+9 {:("Quantity A","Quantity B"),(x,6):}

6lemlt12 {:("Quantity A","Quantity B"),(9-m,m-9):}

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

(5+sqrt(6))/(5-sqrt(6))times(5+sqrt(6))/(5+sqrt 6)

Solve for x. x=(sqrt(384))/(sqrt2xxsqrt3)

Simplify sqrt(5+2sqrt(6))+sqrt(8-2sqrt(15))

3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

sqrt(21-4sqrt5+8sqrt3-4sqrt12)=

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))