Home
Class 12
MATHS
y is an integer. {:("Quantity A","Quan...

y is an integer.
`{:("Quantity A","Quantity B"),((1)/(2^(y)),(1)/(3^(y))):}`

A

Quantity A is greater.

B

Quantity B is greater.

C

The two quantities are equal.

D

The relationship cannot be determined from the infromation given.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the two quantities given: **Quantity A:** \(\frac{1}{2^y}\) **Quantity B:** \(\frac{1}{3^y}\) where \(y\) is an integer. ### Step 1: Analyze the expressions for different values of \(y\) 1. **If \(y = 1\):** - Quantity A: \(\frac{1}{2^1} = \frac{1}{2}\) - Quantity B: \(\frac{1}{3^1} = \frac{1}{3}\) - Comparison: \(\frac{1}{2} > \frac{1}{3}\) - Conclusion: Quantity A is greater than Quantity B. 2. **If \(y = -1\):** - Quantity A: \(\frac{1}{2^{-1}} = 2\) - Quantity B: \(\frac{1}{3^{-1}} = 3\) - Comparison: \(2 < 3\) - Conclusion: Quantity B is greater than Quantity A. 3. **If \(y = 0\):** - Quantity A: \(\frac{1}{2^0} = 1\) - Quantity B: \(\frac{1}{3^0} = 1\) - Comparison: \(1 = 1\) - Conclusion: Quantity A is equal to Quantity B. ### Step 2: Generalize the comparison - For positive values of \(y\): - As \(y\) increases, \(2^y\) grows faster than \(3^y\), hence \(\frac{1}{2^y}\) will be greater than \(\frac{1}{3^y}\). - For negative values of \(y\): - As \(y\) decreases (becomes more negative), \(2^y\) approaches zero slower than \(3^y\), hence \(\frac{1}{3^y}\) will be greater than \(\frac{1}{2^y}\). ### Conclusion Since the relationship between Quantity A and Quantity B changes depending on the value of \(y\) (whether it is positive, negative, or zero), we cannot determine a consistent relationship between the two quantities. Thus, the answer is that the relationship cannot be determined from the information given. ### Final Answer: **Option 4: The relationship cannot be determined from the information given.** ---
Promotional Banner

Similar Questions

Explore conceptually related problems

x is an integer. {:("Quantity A","Quantity B"),((1)/(100^(x)),(1)/(99^(x))):}

{:("Quantity A","Quantity B"),(2^(y),((1)/(2))^(-y)):}

{:("Quantity A","Quantity B"),(y,10):}

{:("Quantity A","Quantity B"),(x,y):}

{:("Quantity A","Quantity B"),((1)/(2^(t)),2^(t)):}

n is an integer. {:("Quantity A","Quantity B"),((-1)^(2n+1)xx(-1)^(n),(1)^(n)):}

{:("Quantity A","Quantity B"),((x)/(|x|),(y)/(|y|)):}

n is an integer. {:("Quantity A","Quantity B"),((-3)^(2n),(-3)^(2n+1)):}

{:("Quantity A","Quantity B"),(x+y,2x):}

{:("Quantity A","Quantity B"),(w+y,x+z):}