Home
Class 12
MATHS
x gt0 {:("Quantity A","Quantity B"),((...

`x gt0`
`{:("Quantity A","Quantity B"),((4x^(2)+2x^(2)+3x+9)/(2x),2x+x+(3)/(2)+(18)/(4x)):}`

A

Quantity A is greater.

B

Quantity B is greater.

C

The two quantities are equal.

D

The relationship cannot be determined from the infromation given.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare Quantity A and Quantity B given the expressions: **Quantity A:** \(\frac{4x^2 + 2x^2 + 3x + 9}{2x}\) **Quantity B:** \(2x + x + \frac{3}{2} + \frac{18}{4x}\) Let's simplify both quantities step by step. ### Step 1: Simplify Quantity A We start with Quantity A: \[ \text{Quantity A} = \frac{4x^2 + 2x^2 + 3x + 9}{2x} \] Combine like terms in the numerator: \[ = \frac{(4x^2 + 2x^2) + 3x + 9}{2x} = \frac{6x^2 + 3x + 9}{2x} \] Now, we can separate the terms in the fraction: \[ = \frac{6x^2}{2x} + \frac{3x}{2x} + \frac{9}{2x} \] This simplifies to: \[ = 3x + \frac{3}{2} + \frac{9}{2x} \] ### Step 2: Simplify Quantity B Now let's simplify Quantity B: \[ \text{Quantity B} = 2x + x + \frac{3}{2} + \frac{18}{4x} \] Combine like terms: \[ = (2x + x) + \frac{3}{2} + \frac{18}{4x} = 3x + \frac{3}{2} + \frac{18}{4x} \] Notice that \(\frac{18}{4x}\) can be simplified: \[ \frac{18}{4x} = \frac{9}{2x} \] So, we have: \[ \text{Quantity B} = 3x + \frac{3}{2} + \frac{9}{2x} \] ### Step 3: Compare Quantity A and Quantity B Now we have: \[ \text{Quantity A} = 3x + \frac{3}{2} + \frac{9}{2x} \] \[ \text{Quantity B} = 3x + \frac{3}{2} + \frac{9}{2x} \] Since both quantities are identical, we conclude: \[ \text{Quantity A} = \text{Quantity B} \] ### Final Conclusion Thus, the correct answer is that the two quantities are equal. **Answer:** The two quantities are equal. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),((x)/(2),2x):}

{:("Quantity A","Quantity B"),(x+y,2x):}

xy gt0 {:("Quantity A","Quantity B"),((x+y)^(2),(x-y)^(2)):}

{:("Quantity A","Quantity B"),(x,3x-4):}

xlt0 {:("Quantity A","Quantity B"),(x-2,-(x-2)):}

x=4 {:("Quantity A","Quantity B"),(|2-x|,2):}

4x-12gex+9 {:("Quantity A","Quantity B"),(x,6):}

xgt0 {:("Quantity A","Quantity B"),((2+(2)/(3x))/(2),(3+(3)/(2x))/(3)):}

x^(2)-6x+8=0 {:("Quantity A","Quantity B"),(x^(2),2^(x)):}

xyzlt0 {:("Quantity A","Quantity B"),(x+y+z,2x+2y+2z):}