Home
Class 12
MATHS
x^(2)-6x+8=0 {:("Quantity A","Quantity...

`x^(2)-6x+8=0`
`{:("Quantity A","Quantity B"),(x^(2),2^(x)):}`

A

Quantity A is greater.

B

Quantity B is greater.

C

The two quantities are equal.

D

The relationship cannot be determined from the infromation given.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 6x + 8 = 0 \) and compare the quantities \( A \) and \( B \), we will follow these steps: ### Step 1: Solve the quadratic equation The given equation is: \[ x^2 - 6x + 8 = 0 \] We can use the quadratic formula to find the roots of the equation, which is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -6 \), and \( c = 8 \). ### Step 2: Substitute values into the quadratic formula Substituting \( a \), \( b \), and \( c \) into the formula: \[ x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{6 \pm \sqrt{36 - 32}}{2} \] ### Step 3: Simplify under the square root Calculating the expression under the square root: \[ x = \frac{6 \pm \sqrt{4}}{2} \] Since \( \sqrt{4} = 2 \), we have: \[ x = \frac{6 \pm 2}{2} \] ### Step 4: Calculate the two possible values of \( x \) Now we can find the two values of \( x \): 1. \( x = \frac{6 + 2}{2} = \frac{8}{2} = 4 \) 2. \( x = \frac{6 - 2}{2} = \frac{4}{2} = 2 \) ### Step 5: Calculate Quantity A and Quantity B Now we will calculate Quantity A and Quantity B for both values of \( x \). **For \( x = 4 \):** - Quantity A: \( A = x^2 = 4^2 = 16 \) - Quantity B: \( B = 2^x = 2^4 = 16 \) **For \( x = 2 \):** - Quantity A: \( A = x^2 = 2^2 = 4 \) - Quantity B: \( B = 2^x = 2^2 = 4 \) ### Step 6: Compare Quantity A and Quantity B - For \( x = 4 \): \( A = 16 \) and \( B = 16 \) (both are equal) - For \( x = 2 \): \( A = 4 \) and \( B = 4 \) (both are equal) ### Conclusion In both cases, Quantity A and Quantity B are equal. Therefore, we conclude that: \[ \text{Quantity A} = \text{Quantity B} \] ### Final Answer The correct option is C: Quantity A is equal to Quantity B. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),((x)/(2),2x):}

{:("Quantity A","Quantity B"),(x,y):}

{:("Quantity A","Quantity B"),(x,12):}

xlt0 {:("Quantity A","Quantity B"),(x-2,-(x-2)):}

{:("Quantity A","Quantity B"),(x+y,2x):}

x^(2)-12x+36=0 {:("Quantity A","Quantity B"),(x,6):}

x^(2)-2x-15=0 {:("Quantity A","Quantity B"),(x,1):}

x=4 {:("Quantity A","Quantity B"),(|2-x|,2):}

xy gt0 {:("Quantity A","Quantity B"),((x+y)^(2),(x-y)^(2)):}

{:("Quantity A","Quantity B"),(x,3x-4):}