Home
Class 12
MATHS
altalt1ltbltc {:("Quantity A","Quantit...

`altalt1ltbltc`
`{:("Quantity A","Quantity B"),((c^(2))/(a),(bc)/(ab)):}`

A

Quantity A is greater.

B

Quantity B is greater.

C

The two quantities are equal.

D

The relationship cannot be determined from the infromation given.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of comparing Quantity A and Quantity B, we will follow these steps: ### Step 1: Define the quantities - **Quantity A:** \( \frac{c^2}{a} \) - **Quantity B:** \( \frac{bc}{ab} \) ### Step 2: Substitute values for \( a \), \( b \), and \( c \) Given the conditions: - \( 0 < a < 1 \) - \( 1 < b < c \) We can choose: - Let \( a = 0.5 \) - Let \( b = 2 \) - Let \( c = 3 \) (since \( c \) must be greater than \( b \)) ### Step 3: Calculate Quantity A Using the chosen values: \[ \text{Quantity A} = \frac{c^2}{a} = \frac{3^2}{0.5} = \frac{9}{0.5} = 18 \] ### Step 4: Calculate Quantity B Using the chosen values: \[ \text{Quantity B} = \frac{bc}{ab} = \frac{2 \cdot 3}{0.5 \cdot 2} = \frac{6}{1} = 6 \] ### Step 5: Compare Quantity A and Quantity B Now we compare the two quantities: \[ \text{Quantity A} = 18 \quad \text{and} \quad \text{Quantity B} = 6 \] Since \( 18 > 6 \), we conclude that: \[ \text{Quantity A} > \text{Quantity B} \] ### Final Conclusion Thus, Quantity A is greater than Quantity B. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),(x,12):}

{:("Quantity A","Quantity B"),(x,y):}

{:("Quantity A","Quantity B"),((x)/(2),2x):}

{:("Quantity A","Quantity B"),(y,10):}

{:("Quantity A","Quantity B"),(x+y,2x):}

{:("Quantity A","Quantity B"),((x)/(|x|),(y)/(|y|)):}

{:("Quantity A","Quantity B"),(2^(y),((1)/(2))^(-y)):}

{:("Quantity A","Quantity B"),(x,3x-4):}

{:("Quantity A","Quantity B"),(y-x,50):}