Home
Class 12
MATHS
{:("Quantity A","Quantity B"),((1)/(3)+(...

`{:("Quantity A","Quantity B"),((1)/(3)+(1)/(4)+(7)/(12),(1)/((1)/(3)+(1)/(4)+(7)/(12))):}`

A

Quantity A is greater.

B

Quantity B is greater.

C

The two quantities are equal.

D

The relationship cannot be determined from the infromation given.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare Quantity A and Quantity B. **Step 1: Calculate Quantity A** Quantity A is given by: \[ \text{Quantity A} = \frac{1}{3} + \frac{1}{4} + \frac{7}{12} \] To add these fractions, we need a common denominator. The least common multiple (LCM) of the denominators (3, 4, and 12) is 12. Now, we convert each fraction to have a denominator of 12: \[ \frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12} \] \[ \frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12} \] \[ \frac{7}{12} = \frac{7}{12} \quad \text{(already has the common denominator)} \] Now, we can add them: \[ \text{Quantity A} = \frac{4}{12} + \frac{3}{12} + \frac{7}{12} = \frac{4 + 3 + 7}{12} = \frac{14}{12} = \frac{7}{6} \] **Step 2: Calculate Quantity B** Quantity B is given by: \[ \text{Quantity B} = \frac{1}{\left(\frac{1}{3} + \frac{1}{4} + \frac{7}{12}\right)} \] Since we already calculated the value of Quantity A as \(\frac{7}{6}\), we can substitute this value into Quantity B: \[ \text{Quantity B} = \frac{1}{\frac{7}{6}} = \frac{6}{7} \] **Step 3: Compare Quantity A and Quantity B** Now we have: - Quantity A = \(\frac{7}{6}\) - Quantity B = \(\frac{6}{7}\) To compare these two quantities, we can convert them to decimal form or find a common denominator. Calculating the decimal values: \[ \frac{7}{6} \approx 1.1667 \] \[ \frac{6}{7} \approx 0.8571 \] Since \(1.1667 > 0.8571\), we conclude that: \[ \text{Quantity A} > \text{Quantity B} \] Thus, the answer is that Quantity A is greater than Quantity B.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),((1)/(4)-(1)/(5)+(1)/(6)-(1)/(7)+(1)/(8),(1)/(4)):}

{:("Quantity A","Quantity B"),((1)/((1)/(2)+(1)/(4)+(1)/(8)),(1)/(2)+(1)/(4)+(1)/(8)):}

{:("Quantity A","Quantity B"),((1)/(6)-((1)/(2))^(2)+(-(1)/(4))^(2),(1)/(6)):}

{:("Quantity A","Quantity B"),((0.bar7)(0.8)(35),(1.8)(15)(0.bar7)):}

4x-12gex+9 {:("Quantity A","Quantity B"),(x,6):}

1lt2xlt2 {:("Quantity A","Quantity B"),(x^(5),x^(7)):}

y is an integer. {:("Quantity A","Quantity B"),((1)/(2^(y)),(1)/(3^(y))):}

{:("Quantity A","Quantity B"),(0.125+(4)/(5)+(2)/(3)+1.2,0.8+0.bar6+(6)/(5)+(1)/(8)):}

x^2ltxlt1 {:("Quantity A","Quantity B"),((x^(3)-x)(4x+3),(x^(2)+1)(4x^(2)+3x)):}

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....