Home
Class 12
MATHS
{:("Quantity A","Quantity B"),(((4)/(3)+...

`{:("Quantity A","Quantity B"),(((4)/(3)+(-2))/(-2),(-(4)/(3)+2)/(2)):}`

A

Quantity A is greater.

B

Quantity B is greater.

C

The two quantities are equal.

D

The relationship cannot be determined from the infromation given.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate both Quantity A and Quantity B and compare them. **Step 1: Evaluate Quantity A** Quantity A is given as: \[ \text{Quantity A} = \frac{4}{3} + \frac{-2}{-2} \] First, simplify \(\frac{-2}{-2}\): \[ \frac{-2}{-2} = 1 \] Now substitute this back into Quantity A: \[ \text{Quantity A} = \frac{4}{3} + 1 \] To add these fractions, convert 1 into a fraction with a common denominator: \[ 1 = \frac{3}{3} \] Now we can add: \[ \text{Quantity A} = \frac{4}{3} + \frac{3}{3} = \frac{4 + 3}{3} = \frac{7}{3} \] **Step 2: Evaluate Quantity B** Quantity B is given as: \[ \text{Quantity B} = \frac{-\left(\frac{4}{3}\right) + 2}{2} \] First, simplify \(-\left(\frac{4}{3}\right) + 2\): Convert 2 into a fraction: \[ 2 = \frac{6}{3} \] Now substitute this back into Quantity B: \[ \text{Quantity B} = \frac{-\frac{4}{3} + \frac{6}{3}}{2} \] Combine the fractions in the numerator: \[ -\frac{4}{3} + \frac{6}{3} = \frac{-4 + 6}{3} = \frac{2}{3} \] Now substitute this back into Quantity B: \[ \text{Quantity B} = \frac{\frac{2}{3}}{2} \] This can be simplified as follows: \[ \text{Quantity B} = \frac{2}{3} \times \frac{1}{2} = \frac{2}{6} = \frac{1}{3} \] **Step 3: Compare Quantity A and Quantity B** Now we have: \[ \text{Quantity A} = \frac{7}{3} \] \[ \text{Quantity B} = \frac{1}{3} \] Clearly, \(\frac{7}{3} > \frac{1}{3}\). Thus, we conclude that: \[ \text{Quantity A} > \text{Quantity B} \] **Final Answer:** Quantity A is greater than Quantity B. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),((x)/(2),2x):}

{:("Quantity A","Quantity B"),(x,3x-4):}

{:("Quantity A","Quantity B"),(((2)/(3)xx(3)/(3),(2)/(3)xx(4)/(4)):}

xgt0 {:("Quantity A","Quantity B"),((2+(2)/(3x))/(2),(3+(3)/(2x))/(3)):}

{:("Quantity A","Quantity B"),(x+y,2x):}

{:("Quantity A","Quantity B"),((1)/(2^(t)),2^(t)):}

{:("Quantity A","Quantity B"),(2^(y),((1)/(2))^(-y)):}

x=4 {:("Quantity A","Quantity B"),(|2-x|,2):}

{:("Quantity A","Quantity B"),((1)/(6)-((1)/(2))^(2)+(-(1)/(4))^(2),(1)/(6)):}