Home
Class 12
MATHS
1lt2xlt2 {:("Quantity A","Quantity B")...

`1lt2xlt2`
`{:("Quantity A","Quantity B"),(x^(5),x^(7)):}`

A

Quantity A is greater.

B

Quantity B is greater.

C

The two quantities are equal.

D

The relationship cannot be determined from the infromation given.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(1 < 2x < 2\) and compare the quantities \(x^5\) and \(x^7\), we can follow these steps: ### Step 1: Solve the inequality We start with the inequality: \[ 1 < 2x < 2 \] We can break this down into two parts. 1. From \(1 < 2x\): \[ \frac{1}{2} < x \] 2. From \(2x < 2\): \[ x < 1 \] Combining these results, we have: \[ \frac{1}{2} < x < 1 \] ### Step 2: Choose a value for \(x\) To compare \(x^5\) and \(x^7\), we can choose a value of \(x\) that lies within the interval \(\left(\frac{1}{2}, 1\right)\). A suitable choice is: \[ x = \frac{3}{4} \] ### Step 3: Calculate \(x^5\) and \(x^7\) Now we calculate \(x^5\) and \(x^7\) using \(x = \frac{3}{4}\). 1. Calculate \(x^5\): \[ x^5 = \left(\frac{3}{4}\right)^5 = \frac{3^5}{4^5} = \frac{243}{1024} \] 2. Calculate \(x^7\): \[ x^7 = \left(\frac{3}{4}\right)^7 = \frac{3^7}{4^7} = \frac{2187}{16384} \] ### Step 4: Compare \(x^5\) and \(x^7\) We know that for \(0 < x < 1\), \(x^n\) decreases as \(n\) increases. Therefore, since \(5 < 7\): \[ x^5 > x^7 \] ### Conclusion Thus, we conclude that: \[ \text{Quantity A } (x^5) > \text{ Quantity B } (x^7) \] ### Final Answer The relationship is: \[ \text{Quantity A} > \text{Quantity B} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),(x,y):}

{:("Quantity A","Quantity B"),(x,12):}

{:("Quantity A","Quantity B"),((x)/(2),2x):}

{:("Quantity A","Quantity B"),(x+y,2x):}

{:("Quantity A","Quantity B"),(x,3x-4):}

{:("Quantity A","Quantity B"),(y-x,50):}

{:("Quantity A","Quantity B"),((1)/(2^(t)),2^(t)):}

{:("Quantity A","Quantity B"),(2^(y),((1)/(2))^(-y)):}

{:("Quantity A","Quantity B"),((x)/(|x|),(y)/(|y|)):}