Home
Class 12
MATHS
3- (2^3 - 2[3 - 16 -: 2]) =...

`3- (2^3 - 2[3 - 16 -: 2]) = `

A

`-15`

B

`-5`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3 - (2^3 - 2[3 - 16 \div 2]) \), we will follow the order of operations (PEMDAS/BODMAS). ### Step-by-Step Solution: 1. **Calculate \( 2^3 \)**: \[ 2^3 = 8 \] **Hint**: Remember that \( a^b \) means \( a \) multiplied by itself \( b \) times. 2. **Calculate \( 16 \div 2 \)**: \[ 16 \div 2 = 8 \] **Hint**: Division should be performed before subtraction in the brackets. 3. **Substitute back into the expression**: \[ 3 - (8 - 2[3 - 8]) \] 4. **Calculate \( 3 - 8 \)**: \[ 3 - 8 = -5 \] **Hint**: When subtracting a larger number from a smaller number, the result is negative. 5. **Substitute back**: \[ 3 - (8 - 2 \times -5) \] 6. **Calculate \( 2 \times -5 \)**: \[ 2 \times -5 = -10 \] **Hint**: Multiplying a positive number by a negative number results in a negative product. 7. **Substitute back**: \[ 3 - (8 + 10) \] 8. **Calculate \( 8 + 10 \)**: \[ 8 + 10 = 18 \] **Hint**: Adding two positive numbers results in a larger positive number. 9. **Substitute back**: \[ 3 - 18 \] 10. **Calculate \( 3 - 18 \)**: \[ 3 - 18 = -15 \] **Hint**: Subtracting a larger number from a smaller number results in a negative number. ### Final Answer: \[ \text{The final result is } -15. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The matrix X for which [1-4 3-2]X=[-16-6 7 2] [-2 4-3 1] (b) [-1/5 2/5(-3)/(10)1/5] [6 2(11)/2 2] (d) [-16-6 7 2]

The area bounded by parabola y^2=4a x\ a n d\ x^2=4a y is (8a^3)/3 b. (16 a^2)/3 c. (32 a^2)/3 d. (64 a^2)/3

If one root of the equation a x^2+b x+c=0 is three times the other, then b^2: a c= (a) 3\ :1 (b) 3\ : 16 (c) 16\ :3 (d) 16\ :1

Solve for x |x-2 , 2x-3, 3x-4,x-4 ,2x-9, 3x-16 ,x-8, 2x-27, 3x-64|=0.

If one root of the equation 2x^2+b x+c=0 is three times the other, then b^2: a c= (a) 3:1 (b) 3:16 (c) 16:3 (d) 16:1

If a >0, then least value of (a^3+a^2+a+1)^2 is (a) 64 a^2 (b) 16 a^4 (c) 16 a^3 (d)d. none of these

The matrix X for which [[1,-4],[ 3,-2]]X=[[-16-,6],[ 7 ,2]] is a. [[-2, 4],[-3, 1]] b. [[-1/5, 2/5],[-3/(10),1/5]] c. [[-16, 16],[ 7 ,2]] d. [[6, 2],[(11)/2, 2]]

Evaluate lim_(x to 16) (x^(3//2) - 64)/(x - 16)

Solve : |[x-2,2x-3,3x], [-4x-4,2x-9,3x-16], [x-8,2x-27,3x-64]| = 0

Let A be a matrix of order 3 xx 3 such that det ( A)= 2 , B = 2A^(-1) and C = (( adjA))/(root(3)(16)) ,then the value of det(A^(3) B^(2) C^(3)) is