Home
Class 11
MATHS
[" ILLUSTRATION 14If "f(x)={[([x]^(2)+si...

[" ILLUSTRATION 14If "f(x)={[([x]^(2)+sin[x])/([x])," for "[x]!=0" where "],[0," for "[x]=0]],[[x]" denotes the greatest integer function,then "lim_(x rarr0)f(x)," is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

If f(x) = {((sin(1+[x]))/([x]), for [x] ne 0),(0, for [x] = 0):} , where [x] denotes the greatest integer not exceeding x, then, lim_(x rarr 0^-) f(x) =

lim_(x rarr0)(|x|)/(x)

Let f(x)=x(-1)^([1/x]);x!=0 where [.] denotes greatest integer function,then lim_(x rarr0)f(x) is :

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer function, then lim_(x rarr 0) f (x) is :

lim_(x rarr0)[sin x]

lim_(x rarr0)[(x)/([x])]=