Home
Class 12
MATHS
log sqrt((x-1)/(x+1))...

log sqrt((x-1)/(x+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) { log ((sqrt(x+1) -1)/(sqrt(x + 1 ) +1 )) + ( sqrtx)/(sqrt( x +1))}=

If y= log (sqrt(x - 1)) - sqrt(x + 1)) , "then " (dy)/(dx) is equal to

int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)/(x)+1-1))/(sqrt(x+(1)/(x)+1+1))|-A+c. Then the value of A is equal to

int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)/(x)+1-1))/(sqrt(x+(1)/(x)+1+1))|-A+c. Then the value of A is equal to

Let (e^(x)-e^(-x))/(e^(x)+e^(-x))=ln sqrt((1+x)/(1-x)), then find x

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))

If y=log{sqrt(x-1)-sqrt(x+1)} , show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))