Home
Class 12
MATHS
If |z-(3+2i)|=|zcos(pi/4-argz)| , then l...

If `|z-(3+2i)|=|zcos(pi/4-argz)|` , then locus of z is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-(3+2i)|=|z cos((pi)/(4)-argz)|, then locus of z is

If abs(z-2-i)=abszabssin(pi/4-argz) then locus of z is

If |2z-4-2i|=|z|sin((pi)/(4)-arg z) then the locus of z represents a conic where eccentricity e is

If the amplitude of z-2-3 i is (pi)/(4) , then the locus of z=x+i y is

If |(z-2)/(z+2)|=(pi)/(6), then the locus of z is

If |z-3+ i|=4 , then the locus of z is

If |z-3+i|=4 , then the locus of z is

If |(z+4i)/(z-2)|=2 then the locus of z is

If arg((z-3+4i)/(z+2-5i))=(5 pi)/(6), then locus of z represents .........

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is