Home
Class 12
MATHS
Show that: int0^(pi//2)f(sin2x)sinxdx...

Show that: `int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: int_(0)^( pi/2)f(sin2x)sin xdx=sqrt(2)int_(0)^( pi/4)f(cos2x)cos xdx

If the function f : [-1,1] to R is continuous and even, then show that int_(0)^(pi//2)f(cos2x)cosxdx=sqrt(2)int_(0)^(pi//4)f(sin2x)cosxdx .

If the function f : [-1,1] to R is continuous and even, then show that int_(0)^(pi//2)f(cos2x)cosxdx=sqrt(2)int_(0)^(pi//4)f(sin2x)cosxdx .

The value of the integral sqrt2 int_0^(pi/2) f(sin2x) sinx dx=A (sqrt2/9) int_0^(pi/4) f(cos2x)cosx dx then the value of A is

int_(0)^(pi//4)x^(2)sinxdx

int_0^(pi/2) sqrt(cosx)sinxdx

int_0^(pi/2) sqrt(cosx)sinxdx

int_0^(pi/2) x^2sinxdx

Evaluate : int_0^(pi/2)x^2sinxdx