Home
Class 12
MATHS
=3/5lim(x->0)((1-cos2x*cos4x*cos6x*cos8x...

`=3/5lim_(x->0)((1-cos2x*cos4x*cos6x*cos8x*cos10 x)/(x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos2x-cos8x+cos6x=1

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

lim_(x->0)(1-cos x-cos2x+cos x*cos2x)/(x^(4))

lim_(x-gt0)(cos2x-cos3x)/(cos4x-1)

Lim_(x->0)(1-cos x-cos2x+cos x cos2x)/(x^(4))

lim_(x rarr0)(1-cos4x)/(1-cos6x)

cos4x cos8x-cos5x cos9x=0 if

1+ cos 2x+ cos4x + cos 6x=

lim_(x rarr0)(cos7x-cos9x)/(cos x-cos5x)

Let f(x)=cos2x*cos4x*cos6x*cos8x.cos10x then lim_(x rarr0)(1-(f(x))^(3))/(55sin^(2)x) equals