Home
Class 14
MATHS
log(8)128=?...

log_(8)128=?

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_(4) 128 is

Which of the following reduces to an integer? (1) (log32)/(log4) (2) (log_(5)128)/(log_(5)16-log_(5)4) (3) (2log6)/(log12+log3) (4) log_(4)8

For N>1, then product (1)/(log_(2)N)*(1)/(log_(N)8)*(1)/(log_(32)N)*(1)/(log_(N)128) simplifies to (a) (3)/(7) (b) (3)/(7ln2) (c) (3)/(5ln2)(d)(5)/(21)

" 4) "log_(8)1+log_(8)2+log_(8)8=log_(8)(1+2+3)

log_(3)(5+x)+log_(8)8=2^(2)

3^(log_(3)7)+7^(log_(8)(1/8))+log_(0.3)3

If log_(8)a+log_(8)b=(log_(8)a)(log_(8)b) and log_(a)b=3 then the value of 'a' is