Home
Class 12
MATHS
" iv "lim(x rarr4)(x^(7/2)-4^((7)/(2)))/...

" iv "lim_(x rarr4)(x^(7/2)-4^((7)/(2)))/(log_(e)(x-3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x to 4)(x^(7/2)-4^(7/2))/(log_(e)(x-3))

The value of lim_(xto4) (x^(7//2)-4 ^(7//2))/(log _(e) (x-3)) is-

lim_(x rarr4)((x^(3//2)-8)/(x-4)) =

lim_(x rarr0)(5^(4x)-7^(2x))/(x)

"lim_(x rarr0)(log_(e)(1+(x)/(2)))/(x)

Prove that : lim_(x rarr0)(3^(x)+3^(-x)-2)/(x^(2))=(log_(e)3)^(2)

Prove that : lim_(x rarr0)(3^(x)+3^(-x)-2)/(x^(2))=(log_(e)3)^(2)

lim_(x rarr0)(5^(x^(4))-1-x^(4)log_(e)5)/(x^(4))

Prove that, lim_(x rarr 0) (5^(x)-4^(x))/(x)=log_(e)((5)/(4))

lim_(x rarr0)((ln(1+x^(2)+x^(4)))/((e^(x)-1)x)