Home
Class 8
MATHS
" (x) "|[a,b,c],[a^(2),b^(2),c^(2)],[bc,...

" (x) "|[a,b,c],[a^(2),b^(2),c^(2)],[bc,ca,ab]|=(b-c)(c-a)(a-b)(bc+ca+ab)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the following. [[a,b,c],[a^2,b^2,c^2],[bc,ca,ab]] =(b-c)(c-a)(a-b)(bc+ca+ab)

Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c-a)(ab+bc+ca)

Prove that: 1/(bc+ca+ab)|[a, b, c],[a^2, b^2, c^2], [bc, ca, ab]|=(b-c),(c-a),(a-b)

Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2),c^(2)),( bc,ca,ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)

Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,ca,ab)|=(a-b)(b-c)(c-a)(ab+bc+ca)

Prove that abs((a,b,c),(a^2,b^2,c^2),(bc,ca,ab))=(a-b)(b-c)(c-a)(ab+bc+ca)

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(ab+bc+ca)

Show that det[[1,1,1a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .