Home
Class 12
MATHS
Given tan^(-1)a+tan^(-1)b=(pi)/(2) find ...

Given `tan^(-1)a+tan^(-1)b=(pi)/(2)` find the value of `ab`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)2+tan^(-1)3+theta=pi, find the value of theta.

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4) then find the value of x

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4), then find the value of x.

If tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=(pi)/(4) ,then find the value of x .

tan^-1a+tan^-1b=pi/4 . Find the value of a+b-(a^2+b^2)/2+(a^3+b^3)/3-(a^4+b^4)/5+ . . .

If tan A=(a)/(a+1) and tan B=(1)/(2a+1) then find the value of A+B

tan(A+B)=(1)/(2),tan(A-B)=(1)/(3), then find the value of tan2A

If tan(A+B)=(1)/(2),tan(A-B)=(1)/(3) , then find the value of tan2A .