Home
Class 10
MATHS
If theta is an acute angle such that sec...

If `theta` is an acute angle such that `sec^2(theta)=3`then find the value of `(tan^2(theta)-cosec^2(theta))/(tan^2(theta)+cosec^2(theta))` A)4/7 B)3/7 C)2/7 D)1/7

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is an acute angle such that sec^(2)theta=3 then the value of (tan^(2)theta-cos ec^(2)theta)/(tan^(2)theta+cos ec^(2)theta) is (4)/(7)(b)(3)/(7)(c)(2)/(7)(d)(1)/(7)

Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).

If theta is an acute angle and tan theta+cot theta=2 find the value of tan^(7)theta+cot^(7)theta

Prove that;- ((tan^2theta)/(sec^2theta))+((cot^2theta)/(cosec^2theta))=1

The value of (tan theta cosec theta)^(2) - (sin theta sec theta)^(2) is:

If "cosec"theta=sqrt(2) ,then find the value of (tan^(2)theta-1) .

What is the value of (tan theta cosec theta)^(2)- (sin theta sec theta)^(2) .

If sintheta+cosectheta=2 , then the value of (sin^(7)theta+cosec^(7)theta) is

tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

What is the value of (tan theta "cosec" theta )^(2) -( sin theta sec theta) ^(2)