Home
Class 8
MATHS
sin[cos^(-1)(3/5)+tan^(-1)2]=...

`sin[cos^(-1)(3/5)+tan^(-1)2]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

sin[cos^(-1)(-1/2)+tan^(-1)(sqrt(3))]

tan [cos^(-1)((4)/(5)) +tan ^(-1)((2)/(3))]=....

The value of tan[sin^(-1) (3/5)+tan^(-1) (2/3)] is

tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=

sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(tan^(-1)(1/2)+tan^(-1)2) =

Prove the following results: tan((cos^(-1)4)/(5)+(tan^(-1)2)/(3))=(17)/(6)(ii)cos((sin^(-1)3)/(5)+(cot^(-1)3)/(2))=(6)/(5sqrt(13))

Evaluate following 1. sin(cos^(-1) 3//5) 2. cos(tan^(-1)3//4) 3. sin(pi/2-sin^(-1) (-1/2))

cos^(-1)((63)/(65))+2tan^(-1)((1)/(5))=sin^(-1)(3/5)