Home
Class 12
MATHS
" Given "A=(0,6),B=(4,0),C=(-3,0),D=(0,-...

`" Given "A=(0,6),B=(4,0),C=(-3,0),D=(0,-2)" concylic points,the orthocenter of "Delta ABC" is "`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given A=(0,6),B=(4,0),C=(-3,0), the orthocenter of Delta ABC is

Let A(3,4) B(5,0), C(0,5) be the vertices of a triangle ABC then orthocentre of Delta ABC is (alpha, beta) Find alpha + beta

" Let "A-=(-2,0),B-=(4,0),C-=(h,h)" .If perimeter of triangle "ABC" is minimum,then "

The points (0,0),(2,0),(0,3) and (-c,0) are concylic.Then the value of c is

Find the area of Delta ABC if : a=6,b=8,C=30^(0)

Let A-=(-2,0),B-=(4,0),C-=(h,h) . If perimeter of triangle ABC is minimum,then

If A(0,0),B(2,4) and C(6,4) are the vertices of a Delta ABC, find theof its sides.

In triangle ABC ,if AB=sqrt(2),AC=sqrt(20) ,B=(3,2,0),C=(0,1,4) and D is the midpoint of BC then AD=

If O ( 0 , 0 ) , A ( 3 , 0 ) , B ( 3 , 4 ) , C ( 0 , 4 ) are four given points then the figure OABC is a