Home
Class 14
MATHS
int 1/(xsqrt(x^2-1)) dx =...

`int 1/(xsqrt(x^2-1)) dx =`

Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/(xsqrt(x^4-1))dx

int(1)/(xsqrt(x-1))dx=

int (1)/(xsqrt(x))dx

(i) int 1/(xsqrt(x-1))dx (ii) int 1/((x+2)sqrt(x+3)) dx

Evaluate the following indefinite integrals : (i) intsqrt(a^(2)-x^(2))dx (ii) int(1)/(sqrt(49+x^(2)))dx (iii) int(1)/(xsqrt(x^(6)-1))dx (iv) intsqrt((1+x)/(1-x))dx (v) intsqrt((x^(2009))/(2x^(2008)-x^(2009)))dx (vi) int(1)/(sqrt((x-4)(x-5)))dx

Evaluate: int(x^2+1)/(xsqrt(x^2+1))dx

int(1)/(xsqrt(1-x^(3))) dx is equal to