Home
Class 12
MATHS
If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(...

If `(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)` and `int_(0)^(1)(ln (l+x))/(x)dx=(3pi^(2))/(k)` then k equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(1)/(n^(2))=(pi^(2))/(6) and int_(0)^(1)(ln x)/(1-x^(2))dx=-(pi^(2))/(lambda)

If (1)/(1^(2))+(2)/(2^(2))+(3)/(3^(2))+...oo=(pi^(2))/(6) implies (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+...oo=(pi^(2))/(k) then k=

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

the integral int_(0)^((1)/(2))(ln(1+2x))/(1+4x^(2))dx equals

7(int_(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+pi) is equal to

int_(a=)^(oo)ln(x+(1)/(x))(dx)/(1+x^(2))dx=(pi)/(2)ln a then

If int_0^(1/2)(x^2)/(1-x^2)^(3/2)dx=k/6 , then k=