Home
Class 12
MATHS
Let (x)=|[cos x,2sin x,sin x],[x,x,x],[1...

Let `(x)=|[cos x,2sin x,sin x],[x,x,x],[1,2x,x]|," then "lim_(x rarr0)(f(x))/(x^(2)` is equal

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)(x)/(|x|+x^(2)) equals

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(sin^(2)x)/(x)=

lim_(x rarr0)x sin((1)/(x^(2)))

. lim_(x rarr0)(x^(2))/(sin x^(2))

lim_(x rarr0)(sin x-x)/(x^(3))

" If "f(x)=|[x,sin x,cos x],[x^(2),tan x,-x^(3)],[2x,sin2x,5x]|" ,then "lim_(x rarr0)(f'(x))/(x)=

let f(x)=det[[cos x,x,12sin x,x^(2),2xtan x,x,1]]. then lim_(x rarr0)(f'(x))/(x)=