Home
Class 12
MATHS
If sin a+7sin b=4(sin c+2sin d) and cos ...

If `sin a+7sin b=4(sin c+2sin d)` and `cos a+7cos b=4(cos c+2cos d)`,where `a,b,c,d in[0,pi],` then the value of `(cos(a-d))/(cos(b-c))` is
(A) `(7)/(2)`
(B)`(2)/(7)`
(C) `(7)/(4)`
(D) `(4)/(7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin A+sin^(2)A=1, then the value of cos^(2)A+cos^(4)A is 2(b)1(c)-2(d)0

Let a,b,c,d be numbers in the interval [0,pi] such that sin a+7sin b=4(sin c+2sin d),cos a+7cos b=4(cos c+2cos d) Prove that 2cos(a-d)=7cos(b-c)

if sin A-sin B=c and cos A-cos B=d then cos ec^(2)((A+B)/(2))

If z^(7)+1=0 then cos((pi)/(7))cos((3 pi)/(7))cos((5 pi)/(7)) is (A)(1)/(8) (B) -(1)/(8)(C)(1)/(2sqrt(2))(D)(1)/(2)

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

The value of cos backslash(2 pi)/(7)+cos backslash(4 pi)/(7)+cos{(6 pi)/(7) is (A) 1(B)-1(C)(1)/(2)(D)-(1)/(2)

If a sin^(2)x+b cos^(2)x=c, b sin^(2)y+a cos^(2)y=d and atan x=btany then the value of ((d-a)(c-a))/((b-c)(b-d))=

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

If cos(A+B+C)=cos A cos B cos C, then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin2sin2C)