Home
Class 11
MATHS
sin^(4)theta+cos^(4)theta=1-(1)/(2)f(the...

`sin^(4)theta+cos^(4)theta=1-(1)/(2)f(theta)` then `f((pi)/(4))`=

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

The minimum value of y=(1+sin^(2)theta+sin^(4)theta+sin^(6)theta+...)+(1+cos^(2)theta+cos^(4)theta+cos^(6)theta+ .) in theta in(0,(pi)/(2)) is

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

If sin^(4) theta+cos^(4)theta=(1)/(2) , then find sin theta cos theta .

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

sin^(4) theta + 2 cos^(2) theta (1 - (1)/( sec^(2) theta)) + cos ^(4) theta =

If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2)theta,cos theta),(sin theta,-cos theta,0)| then, f((pi)/(6))+f((pi)/(3))+f((pi)/(2))+f((2pi)/(3))+f((5pi)/(6))+f(pi)+……+f((53pi)/(6)) is equal to

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

If : sin^(4)theta+cos^(4)theta+sin^(2)theta*cos^(2)theta=1-u^(2), "then" : u=