Home
Class 9
MATHS
If (sqrt(3)-\ 1)/(sqrt(3)+\ 1)=a-b\ sqrt...

If `(sqrt(3)-\ 1)/(sqrt(3)+\ 1)=a-b\ sqrt(3)` , then `a=2,\ b=1` (b) `a=2,\ b=-1` `a=-2,\ b=1` (d) `a=b=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sqrt(3)-1)/(sqrt(3)+1)=a-b sqrt(3), then a=2,b=1 (b) a=2,b=-1a=-2,b=1(d)a=b=1

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

Find the value of a and b if (sqrt(3)-1)/(sqrt(3)+1)=a+b sqrt(3)

If a=(sqrt(3)+1)/(sqrt(3)-1) and b=(sqrt(3)-1)/(sqrt(3)+1) ,find the value of a^(2)+ab-b^(2)

int(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx+c, then (A)a=1,b=-1(B)a=1,b=1(C)a=-1,b=1 (D) a=-1,b=-1

Sin (A + B) = 1/(sqrt2) Cos(A - B) = (sqrt3)/2

If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

A=(1)/(sqrt(5)-sqrt(3)),B=(1)/(sqrt(5)+sqrt(3))=then_(A xx B)

If a=(sqrt(2)+1)/(sqrt(2)-1),b=(sqrt(2)-1)/(sqrt(2)+1), prove that a^(2)+ab+b^(2)=35