Home
Class 8
MATHS
sqrt(x^(p-q))sqrt(x^(q-r))sqrt(x^(r-p))=...

`sqrt(x^(p-q))sqrt(x^(q-r))sqrt(x^(r-p))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: qr sqrt((x^(q))/(x^(r)))times rp sqrt((x^(r))/(x^(p)))times pq sqrt((x^(p))/(x^(q)))

The value of sqrt(p^(-1)q).sqt(q^(-1)r).sqrt(r^(-1) p) is

x^(p-q).x^(q-r).x^(r-p)

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value of qx^(2)-2px+q

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) find the value of qx^(2)-2px+q

If x=(sqrt(p^(6)+q^(2))+sqrt(p^(2)-q^(2)))/(sqrt(p^(2)+q^(2))-sqrt(p^(2)-q^(2))) then q^(2)x^(2)-2p^(2)x+q^(2)=?

if x=(sqrt(p^(2)+q^(2))+sqrt(p^(2)-q^(2)))/(sqrt(p^(2)+q^(2))-sqrt(p^(2)-q^(2))), then q^(2)x^(2)-2p^(2)x+q^(2)=?

find x: (sqrt(p+x)+sqrt(p-x))/(sqrt(p+x)-sqrt(p-x))=5

int((x^(2)+1)dx)/(x sqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))=P sin^(-1)sqrt[x-(1)/(x)+Q]+C then P^(Q) is equal to

int((x^(2)+1)dx)/(x sqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))=P sin^(-1)sqrt[x-(1)/(x)+Q]+C then P^(Q) is equal to