Home
Class 11
MATHS
If A+B=(pi)/(2)rArr Tan A Tan B=1,rArr T...

If `A+B=(pi)/(2)rArr Tan A Tan B=1`,`rArr Tan(A-B)=(tan A-tan B)/(1+tan A tan B)=(tan A-tan B)/(2)`,`rArr tan A=tan B+2tan(A-B)`,
`x= Tan""(5 pi)/(28)+2Tan""(pi)/(7)` Then x

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B=(pi)/(2)rArr Tan A Tan B=1 , rArr Tan(A-B)=(tan A-tan B)/(1+tan A tan B)=(tan A-tan B)/(2) , rArr tan A=tan B+2tan(A-B) , (tan40^(@)+2tan10^(@))*(tan70^(@)-Tan20^(@))=

Prove: (tan A+tan B)/(cot A+cot B)=tan A tan B

(a) tan A+tan B+tan C=tan A tan B tan C

(tan A + tan B) / (tan (A + B)) + (tan A-tan B) / (tan (AB)) =

For all values of A and Btan(A+B)=(tan A+tan B)/(1-tan A tan B) and tan(A-B)=(tan A-tan B)/(1+tan A tan B)

(tan A+tan B-tan C+tan A tan B tan C)/(1-tan A tan B+tan B tan C+tan C tan A)

If f(x)=sec^(2)x then (1+tan A*tan B)^(2)+(tan A-tan B)^(2)=

A+B+C=0^(@)rArr tan A+tan B+tan C=

(tan A + tan B) / (tan A-tan B) = (sin (A + B)) / (sin (AB))

A + B + C = (pi) / (2) rArr tan A tan B + tan B tan C + tan C tan A =