Home
Class 14
MATHS
(d)/(dx)cos^(-1)(sin x)=...

`(d)/(dx)cos^(-1)(sin x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)(sin{2cos^(-1)(sinx)}]=

(d)/(dx)cos^(-1)sqrt(cos x) is equal to

The differentiation of cos x with respect to x is -sin x. i.e.(d)/(dx)(cos x)=sin x

d/(dx)[sin {2 cos^(-1) (sin x)}] =

(d)/(dx) (cos (sec^(-1) ((x)/(8)))=

Differentiate w.r.t.x,cos^(-1)(sin x)

The differentiation of sin x with respect to x is cos x* i.e.(d)/(dx)(sin x)=cos x

(d) / (dx) [sin ^ (- 1) ((sin a cos x) / (1-sin a cos x))] =

(d)/(dx)[(1+cos2x+sin2x)/(1+sin2x-cos2x)]=