Home
Class 12
MATHS
If a(n)=cos^(n)alpha+sin^(n)alpha then 2...

If `a_(n)=cos^(n)alpha+sin^(n)alpha` then `2a_(6)-3a_(4)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(n) = cos^(n) alpha + sin^(n) alpha , then the value of 2 u_(6) - 3 u_(4) +1 is :

If mu_(n) = cos^(n)alpha + sin^(n)alpha , then the value of 2mu_(6)- 3mu_(4) +1 is:

if cos^(2)alpha-sin alpha=(1)/(n) then alpha

If a cos^(3)alpha+3a cos alpha*sin alpha=m and a sin^(3)alpha+3a cos^(3)alpha sin^(3)alpha=n then (m+n)^((2)/(3))+(m-n)^((2)/(3))

If a cos^(3)alpha+3a cos alpha sin^(2)alpha=m and a sin^(2)alpha+3a cos^(2)alpha sin alpha=n then (m+n)^((2)/(3))+(m-n)^((2)/(3))=

If a cos^(3)alpha+3a cos alpha sin^(2)alpha=m and a sin^(3)alpha+3a cos^(2)alpha sin alpha=n. If (m+n)^((2)/(3))+(m-n)^((2)/(3))=2 lambda a^((2)/(3)) then find the value of lambda

If a cos^(3)alpha+3a cos alpha sin^(2)alpha=ma sin^(3)alpha+3a cos^(2)alpha sin alpha=n, then (m+n)^((2)/(3))+(m-n)^((2)/(3))=

cos (n + 1) alpha cos (n-1) alpha + sin (n + 1) alpha sin (n-1) alpha =

If a_(1),a_(2),a_(3)...,a_(n) are real numbers with a_(n)!=0 and cos alpha+i sin alpha is a root of z^(n)+a_(1)z^(n-1)+a_(2)z^(n-2)+...+a_(n-1)z+a_(n) then the value of a_(1)cos alpha+a_(2)cos2 alpha+a_(3)cos3 alpha+...

Given a_(1)cos alpha_(1)+alpha_(2)cos alpha_(2)+…+a_(n)cos alpha_(n)=0 and a_(1)cos(alpha_(1)+theta)+a_(2)cos(alpha_(2)+theta)+…+a_(n)cos(alpha_(n)+theta)=0 (theta ne k pi) , then the value of a_(1)cos(alpha_(1)+lambda)+a_(2)cos(alpha_(2)+lambda)+…+a_(n)cos(alpha_(n)+lambda) is