Home
Class 12
MATHS
int(dx)/(sqrt(a^(2)-x^(2)))=sin^(-1)(x/a...

`int(dx)/(sqrt(a^(2)-x^(2)))=sin^(-1)(x/a)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(a^(2)-x^(2)))=sin^(-1)((x)/(a))+c

int(1)/((sqrt(1-x^(2)))sin^(-1)x)dx

int_(-1)^(1)(x)/(sqrt(1-x^(2)))*sin^(-1)(2x sqrt(1-x^(2)))dx is equal to

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

int sqrt(a^(2)-x^(2))dx=(1)/(2)x sqrt(a^(2)-x^(2))+(1)/(2)a^(2)sin^(-1)((x)/(a))+c

int (dx)/(sqrt(1-tan ^(2) x))=(1)/(lamda)sin ^(-1) (lamda sin x)+C, then lamda=

Prove that int (dx)/sqrt(25-9x^2)=1/3 sin^-1 ((3x)/5)+c

int(sin^(-1)x)/(sqrt(1-x^(2)))dx