Home
Class 12
MATHS
[" 2.Let matrix "A=[[1,y,4],[2,2,z]]" ; ...

[" 2.Let matrix "A=[[1,y,4],[2,2,z]]" ; if "xyz=2 lambda" and "8x+4y+3z=lambda+28," then "(adj A)" A equals: "],[[" (A) "[[lambda+1,0,0],[0,lambda+1,0],[0,0,lambda+1]]," (B) "[[lambda,0,0],[0,lambda,0],[0,0,lambda]]],[" (C) "[[lambda^(2),0,0],[0,lambda^(2),0],[0,0,lambda^(2)]]," (D) "[[lambda+2,0,0],[0,lambda+2,0],[0,0,lambda+2]]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

For a non zero " lambda" ,the value of matrix "[[lambda,1,0],[0,lambda,1],[0,0,lambda]]^(n) " is equal to

A=[[2-lambda,-1,0-1,2-lambda,-10,-1,2-lambda]] then find out

lambda ^ (3) -6 lambda ^ (2) -15 lambda-8 = 0

If A=[[0, 3], [2, 0]] and A^(-1)=lambda(adjA) , then lambda=

Let A=[[x+lambda,x,x] , [x,x+lambda,x] ,[x,x,x+lambda]] then A^(-1) exists if (A) x!=0 (B) lambda!=0 (C) 3x+1!=0 , lambda!=0 (D) x!=0 , lambda!=0

If the matrix [[0,1,-2],[-1,0,3],[lambda,-3,0]] is singular,then lambda=

Find the values of lambda for which 3-lambda,-1,1-1,5-lambda,-11,-1,3-lambda]|=0

A= [{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to