Home
Class 11
MATHS
If A=[(cos^(2)alpha, cos alpha sin alpha...

If `A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)]` and `B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)]` are two matrices such that the product AB is null matrix, then `alpha-beta` is

Promotional Banner

Similar Questions

Explore conceptually related problems

{:A=[(cos^2 alpha,cosalphasinalpha),(cosalphasinalpha,sin^2alpha)]:} {:B=[(cos^2 beta,cosbetasinbeta),(cosbetasinbeta,sin^2beta)]:} are two matrices such that the product AB is the null matrix, then (alpha-beta) is

If A,=[[cos alpha,-sin alphasin alpha,cos alpha]] and B=,[[cos beta,cos alpha]] and B=[[cos beta,-sin betasin beta,cos betasin beta,cos beta]] then show that AB=BA

Prove that the product of the matrices [[cos^2alpha, cosalphasinalpha],[cosalphasinalpha,sin^2alpha]] and [[cos^2beta,cosbetasinbeta],[cosbetasinbeta,sin^beta]] is the null matrix when alpha and beta differ by an odd multiple of pi/ 2.

Evaluate ,,,|cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha,cos beta,sin alpha sin beta,cos alpha]|

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

sin ^ (2) alpha + sin ^ (2) (alpha-beta) -2sin alpha cos beta sin (alpha-beta) = sin ^ (2)

Evaluate: quad =|cos alpha cos beta cos alpha sin beta-sin alpha-sin beta cos beta0sin alpha cos beta sin alpha sin beta cos alpha|