Home
Class 12
MATHS
If f(x)=(-x|x|)/(1+x^3) in R then the i...

If `f(x)=(-x|x|)/(1+x^3)` in R then the inverse of the function f(x) is `f^(-1)(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Computer the inverse of the function : f (x) = (1+x)/(1-x)

Find the inverse of the function: f:R rarr(-oo,1) givenby f(x)=1-2^(-x)

Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

If f(x)=x^(2)-x+1 , then find the inverse of the f (x)

Compute the inverse of the functions: (a) f(x)=In(x+sqrt(x² +1))

Find the inverse of the function f: [-1,1] to [-1,1],f(x) =x^(2) xx sgn (x).

If the function f:R rarr R be such that f(x)=sin(tan^(- 1) x), then inverse of the function f(x) is

Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|

If the function f:R rarr R be such that f(x)=sin(tan^(-1)x) then inverse of the function f(x) is

If the function f:R rarr R be such that f(x)=sin(tan^(-1)x) then inverse of the function f(x) is