Home
Class 12
MATHS
tan^(-1)a+cot^(-1)(a+1)=tan^(-1)(a^2+a+1...

`tan^(-1)a+cot^(-1)(a+1)=tan^(-1)(a^2+a+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)n+cot^(-1)(n+1)=tan^(-1)(n^(2)+n+1)

Prove that i) tan^(-1)(1+x)/(1-x)=pi/4 + tan^(-1)x,x lt 1 ii) tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

cot(tan^(-1)x+cot^(-1)x)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

tan^(-1)(cot x)+cot^(-1)(tan x)

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)