Home
Class 12
MATHS
If the mapping f(x)=ax+b, a>0 maps [-1,1...

If the mapping `f(x)=ax+b, a>0` maps `[-1,1]` on to `[0,2]` then `cot[cot^(-1)(7)+cot^(-1)(8)+cot^(-1)(18)]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

cot7(1^(@))/(2) is equal to

cot(tan^(-1)x+cot^(-1)x)

If the mapping f(x)=ax+b, agt0 maps [-1,1] onto [0,2] then [cot^-1 7+cot^-1 8+cot^-1 18]= (A) f(1) (B) f(0) (C) f(2) (D) f(-1)

Find- cot^(-1)1+cot^(-1)2+cot^(-1)3

If cot^(-1)(1/a) + cot^(-1)(1/b) + cot^(-1)(1/c) = 0 .

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)

Statement 1. If the mapping f(x)=x+b,agt0 maps[-1,1] onto [0,2], then f(x)=11+x , Stastement 2. cot(cot^-1 7+cot^-2 8+cot^-1 18)=3 (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Statement 2 is true