Home
Class 9
MATHS
The value of (lim(x rarr0)(1)/(x^(6))int...

The value of `(lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

The value of lim_(x rarr0)(1+(1)/(x))^(x) is-

The value of lim_(x rarr0)[(x)/(sin x)] is

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)x sin((1)/(x))

lim_(x rarr0)x sin((1)/(x^(2)))

lim_(x rarr0)((1)/(x))^(sin x)