Home
Class 12
MATHS
If f(x)=|cos x| ,then [sqrt(6)f'((pi)/(4...

If `f(x)=|cos x|` ,then `[sqrt(6)f'((pi)/(4))]` is : (where [.] denotes greater integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=sin((pi)/(3)[x]-x^(2)) then the value of f(sqrt((pi)/(3))) is (where [x] denotes the greatest integer function )

The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in" [(pi)/(6), pi] is/are:(where [.] denotes greattest integer function)

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=2[x]+cos x, then f:R rarr R is: (where [] denotes greatest integer function)

Period of function f(x)=min(sin x,|x|}+(x)/(pi)-[(x)/(pi)] (where [ [.] denotes greatest integer function ) is-

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

f(x)=cos^(-1)sqrt(log_([x])((|x|)/(x))) where [.1 denotes the greatest integer function

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is