Home
Class 11
MATHS
vec P+vec Q+vec R=0 and vec |p|=8,vec |Q...

`vec P+vec Q+vec R=0` and `vec |p|=8,vec |Q|=15` and `vec |R|=17` angle between `vec P` and `vec Q` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec P+ vec Q = vec R and |vec P| = |vec Q| = | vec R| , then angle between vec P and vec Q is

Two vectors vec P and vec Q

If |vec P xx vec Q|=PQ then the angle between vec P and vec Q is

Three vectors vec P,vec Q,vec R are such that the |vec P|=|vec Q|,|vec R|=sqrt(2)|vec P| and vec P+vec Q+vec R=0 the ange between vec P and vec Q,vec Q and vec R=0 the ange between vec P and respectively

Two vectors vec p,vec q on a plane satisfy |vec p+vec q|=sqrt(13),|vec p-vec q|=1 and |vec p|=sqrt(3) The angle between vec p and vec q, is equal to

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

If vec(P).vec(Q)= PQ , then angle between vec(P) and vec(Q) is

Three vectors vec(P) , vec(Q) and vec( R) are such that |vec(P)| , |vec(Q )|, |vec(R )| = sqrt(2) |vec(P)| and vec(P) + vec(Q) + vec(R ) = 0 . The angle between vec(P) and vec(Q) , vec(Q) and vec(R ) and vec(P) and vec(R ) are

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If |vec(P) + vec(Q)| = |vec(P) - vec(Q)| , find the angle between vec(P) and vec(Q) .