Home
Class 9
MATHS
If (log a)/(b-c)=(log b)/(c-a)=(log c)/(...

If `(log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b)` then `a^(a)*b^(b)*c^(c)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)*b^(c+a)*c^(a+b)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)+b^(c+a)+c^(a+b) is

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that a^(b+c)*b^(c+a)*c^(a+b)=1

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

(v) quad if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

a,b,c are positive real numbers such that log a(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that (1)a^(b+c)+b^(c+a)+c(a+b)>=3(2)a^(a)+b^(b)+c^(c)>=3

(b) If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) , prove that a^(p)b^(q)c^(r)=1

If a,b,c are positive reral numbers such that (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that