Home
Class 12
MATHS
Solve for x : cot^(-1)x-cot^(-1)(x+2)=pi...

Solve for `x :` `cot^(-1)x-cot^(-1)(x+2)=pi/(12)` , where `x >0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

Solve for x tan^(-1)(x-1)=cot^(-1)((4)/(x))

Solve for x if (cot^(-1)x)^(2)-3(cot^(-1)x)+2>0

Solve : cot^(-1)2x+cot^(-1)3x=(pi)/(4)

tan^(-1) x +cot^(-1)x =(pi)/(2) holds, when

Solve for x : cot^(-1)x+ sin^(-1)( 1/sqrt(5)) = pi/4

prove that tan^(-1)x+cot^(-1)x=pi/2

solve the equation cot^(-1)x+tan^(-1)3=(pi)/(2)

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If sin^(-1)x+cot^(-1)(1/2)=(pi)/(2), " then : " x=